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Abstract—Launched in 2009, the SMOS satellite [1] pro-
duces observations of brightness temperature through passive
microwave radiometry in the protected radio astronomy portion
of the L-band. Although a given point on the Earth’s surface
may be visible for 100 consecutive correlator integration times,
brightness temperature measurements are produced one corre-
lation period at a time, producing temperature maps that are
both noisy and folded due to the antenna array’s undersampling
of the u-v frequency plane.

For a potential successor of SMOS, SMOS-HR [2], we show
that a global inversion of the observation model (based on the
Van Cittert-Zernike theorem) across the orbital trace could
simultaneously unfold and denoise the observations. To this
end, we take advantage of the shift-invariance of the inversion
problem in geodesic coordinates.

I. THE GLOBAL INVERSION IN GEODESIC COORDINATES
ASSOCIATED WITH THE SATELLITE’S TRAJECTORY

To introduce the mathematical method in a slightly sim-
plified geometric setup, we model the Earth’s surface as
a sphere of radius R and suppose the satellite orbits a
great circle1 at altitude h. We call the satellite’s trace the
curve drawn by the subsatellite point, that is, the point of
the Earth at nadir. With these assumptions, the trace is a
closed geodesic. We arbitrarily fix a point of reference on
the trace; for any point along the trace, we denote by y its
geodetic distance along the trace to the reference point, that
is, the arc length of this geodesic divided by R. Since the
satellite moves at constant speed, y is proportional to the
time elapsed since the satellite last passed over the reference
point. Define the x-axis as a great circle passing through the
trace orthogonally at the reference point at a right angle and
x as the angular distance to the trace along that great circle.
We may think of y as the ordinate and x as the abscissa
of such a geographical coordinate system. This coordinate
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1At the resolution scale of SMOS, conversion between spherical and

oblate elliptical models of the Earth calls for only a subpixel correction,
and the extent to which the orbital spiral deviates from a great circle across
a segment of the trace corresponding to a single global inversion (less than
the orbital period) is minor and can profitably be ignored for the proof of
concept that constitutes our present work.

Fig. 1. Left: The spherical model S of the Earth. The satellite’s trace, given
in blue, locally approximates a great circle. R′ is a reference point along
the trace, with respect to which geodesic coordinates associated with the
trajectory may be defined. For any point A ∈ B, the visible band of S,
its geodesic angular coordinates are the angular distances across-track (xA)
and along-track (yA) to R′. Right: The geodesic coordinates in R2. The
set of points visible when the satellite is in position (0, ys) is given by
H(ys) = {(x, y) ∈ [−d, d] × [ys − d, ys + d] | cos(x) cos(y − ys) ≥

R
R+h

}. Points near the center of the band B = ∪y∈RH(y) (those
with |x| ≈ 0) are visible in many snaphots from a variety of incidence
angles θ(x, y; ys) = sin−1 R

ρ

√
1− cos2 x cos2(y − ys) (where the dis-

tance from p(x, y) to the satellite in position (0, ys) is ρ(x, y; ys) =√
R2 + (R+ h)2 − 2R(R+ h) cos(x) cos(y − ys)), whereas those with

|x| near d are visible in few snapshots, at exclusively high incidence angles,
near sin−1

(
R

R+h

)
.

system is thereby determined by the satellite’s trace and a
reference point on that trace: the abscissa’s magnitude equals
the curvilinear distance to the trace as one moves across the
Earth’s surface along a line perpendicular to the trace, and the
ordinate equals the curvilinear distance to the line orthogonal
to the trace. We say that the satellite is “in position (0, y)”
when its subsatellite point is (0, y) with respect to these
coordinates, and we call (x, y) the “geodesic coordinates
associated with the trajectory.”

As the subsatellite point traces a geodesic on the spherical
surface S, in the geodesic coordinate plane R2, the set of
points visible to the satellite forms the band B = [−d, d]×R,
where d = R cos−1

(
R

R+h

)
is the horizon in geodesic coor-

dinates. The application p : B → S locates the point with
those coordinates on Earth’s surface. The point p(x, y) ∈ S
has a signed geodesic distance to the trace equal to x.
The point on the trace closest to p(x, y) is p(0, y). From
Napier’s laws of spherical trigonometry, elements of the
set H(y′) ⊊ [−d, d] × [y′ − d, y′ + d] ⊊ B of points



p(x, y) visible to a satellite in position (0, y′) must satisfy
cos(x) cos(y − y′) ≥ R

R+h .
The geodesic coordinate system is depicted in Figure 1.

A. The observation model in geodesic coordinates

Radio interferometric measurements, such as the SMOS
Level 1A data, are called visibilities and consist of the
complex correlations between the signals received on each
pair of antennas. The Van Cittert-Zernike theorem, which
states that there is a Fourier transform relationship between
visibilities and the intensity image of radio sources, permits
us to produce these images from the visibilities, either by
taking an inverse transform and removing instrument artifacts
from the “dirty” intensity image, or by inverting the system
of equations associated with the observation. The latter
approach, though more computationally expensive, is better
suited to our application.

We use a simplified version2 of the observation model
from Corbella et al. [5], which makes use of the Rayleigh-
Jeans approximation of the Planck equation to give the
visibilities in terms of the brightness temperature. For an
instrument with M antennas, the visibility Vkl between
antennas k and l may be written

Vkl =

∫
||ξ||≤1

T′(ξ)hkl(ξ)e
−2πi⟨ukl,ξ⟩ dS(ξ) , (1)

for k, l ∈ Z/MZ, where ξ is the vector of cosine direc-
tions (ξ, η)—sometimes given (l,m)—along two orthog-
onal directions of the planar antenna array; hkl(ξ) =
Ak(ξ)Al(ξ)e

−2πi⟨ukl,ξ⟩ is the product of the kth antenna’s
radiation pattern,3 the conjugate of the lth antenna’s radiation
pattern, and the baseline-dependent complex exponential
term; dS(ξ) = dξdη√

1−||ξ||2
is the solid angle differential; ukl is

the 2D vector in wavelengths from antenna k to l in the u-v
plane; ⟨·⟩ and || · || are the Euclidean inner product and norm
over Rn; and T′ maps each direction (ξ, η) to its brightness
temperature. Equation (1) can be understood as a Fourier
transform if we extend the product T′(ξ)hkl(ξ) to all of R2

and take its value to be zero at undefined directions (those
for which ||ξ|| > 1).

When the image of sky brightness temperatures is known,
we can work with the corrected visibilities obtained by sub-
tracting out the effect of radio sources in the sky and space,
thereby shrinking the domain of integration to ||ξ|| ≤ c
where c < 1 is the cosine-direction radius associated with
the observation horizon. With our spherical model of Earth,

2We use Equation 7 in the reference. Here we ignore the polarization
properties of the electric field. We do not incorporate coupling from the
incident wave (a in [5]) into the observation model; to do so, we could
simply subtract out from the brightness temperatures T in Equation (1) the
physical temperature of the instrument, which for isolated antennas is the
noise temperature, as is done by Corbella et al. in their Equation 18. For
simplicity, we also ignore the fringe washing function, which arises from
the bandpass filter before the correlator, and which can be folded into hkl.
The complete observation model, directing attention to the coupling and
filtering, is presented in Equations 29-30 of [5]. The method presented in
the present article can assimilate these details without trouble.

3Or rather, the radiation pattern of the entire instrument experienced at
the kth antenna’s port.

c = R
R+h and the visibilities observed by our satellite in

position (0, ys) is given by integrating over H(ys):

Vkl(ys) =

∫
||ξ||≤c

T(x(ξ), ys + y(ξ))hkl(ξ) dS(ξ) , (2)

where T(x, y) gives the brightness temperature at p(x, y)
(the second argument understood to be relative to the ref-
erence meridian) and each direction ξ that intersects with
Earth’s surface does so at geodesic coordinates relative to
the subsatellite point of (x(ξ), y(ξ)).

B. Modeling brightness temperature

In the L-band, observed land and sea surface brightness
temperature is responsive to soil moisture and ocean salinity.
Using the brightness temperature, surface temperature, inci-
dence angle, and the type of surface under surveillance, these
ECVs can be recovered using theoretical models. The use
of such models in the context of satellite monitoring poses
overfitting issues due to the low spatial resolution, leading to
high heterogeneity of environmental conditions across each
pixel.

The best way to model this brightness temperature, we
argue, when observing radiation emitted from a mixture of
many environments, each with its own highly parameterized
physical model, is to jettison the local physics in favor of a
much lower-variance model with few parameters. Thus, we
propose a model where each point p(x, y) has at most m
parameters associated with it, α1(x, y), . . . , αm(x, y). Since
points p(x, y) with low x-coordinate values are observed
at a greater diversity of incidence angles than those with
high x-coordinate values, the number of parameters—and
basis functions—may vary with the value of the across-track
coordinate, x. These parameters are inputs to a model that
governs the relationship between the brightness temperature
and the incidence angle4 θ from p(x, y) to the satellite. The
incidence angle θ(ξ) is related to the received brightness tem-
perature for a variety of reasons, most notably by the amount
of sky through which radiation must pass en route to the
satellite and through the larger pixel sizes, in surface area—
and thus potentially more heterogeneous observations—near
the observation horizon.

This generic brightness temperature model reads

T(x, y, θ) = f0(θ) + α1(x, y)f1(θ) + . . .

+ αm(x, y)fm(θ) = ⟨α(x, y), f(θ)⟩,
(3)

where f = (fi)i=0···m are the basis functions of the model.
When the satellite is in position (0, y), at each cosine

direction ξ below horizon (||ξ|| < c), the satellite observes
the point p(x(ξ), y+ y(ξ)). This means, physically, that the
surface of Earth at p(x, y) emits its brightness temperature
toward the satellite in the angle θ(ξ).

C. Decomposing a global inversion of the visibilities into
inversions of each along-the-track frequency

We substitute our temperature model from Equation (3)
into Equation (2) and tweak the limits of integration to

4In situations where radial symmetry assumption introduces too much
bias, we might instead use basis functions f(ξ) that depend on both cosine
directions in an arbitrary fashion, rather than as mediated through the
incidence angle, that is, rather than f(θ(ξ)).



Fig. 2. Parametric representation of brightness temperatures trained using
level 3 SMOS data taken from several ascending and descending orbits
over several days, over 12 incidence angle bins (each bin in [6] besides
those centered at 40◦ and 62.5◦). These data give, for each bin, vertical
and horizontal polarization brightness temperature, as well as the RMSE
between the modeled and observed brightness temperatures. Using principal
component analysis (PCA), we verified that binned angular brightness
temperature data are highly redundant. Just four principal components
explain almost all the variance. The PCA model given in the two images
above was used in this paper to express the brightness temperature of
a point p(x, y) as a function of the incidence angle θ at which it is
observed and its brightness temperature parameters α(x, y): T(x, y, θ) =
Tmean(θ) +

∑3
i=0

√
varPCiTPCi(θ)αi(x, y), where Tmean(θ) (left

image) is the mean temperature of pixels observed at incidence angle θ and
the TPCi(θ) (right image) are the normalized (orthonormal on R12, not
over the set of points H′) basis functions (covariance matrix eigenvectors
visualized as temperature curves rather than just vectors in R12). The first
basis function is relatively constant (thus, α1 adjusts pixel brightness across
all angles); the second tracks the mean temperature curve; and the remaining
allow adjustments to temperature in particular incidence angle bands.

indicate these visibilities have corrected by subtracting out
the radiation in c < ||ξ|| ≤ 1.

The contributions to the visibilities from the visible surface
of Earth, therefore, can be expressed as

Vkl(ys) =

∫
||ξ||≤c

⟨α(x(ξ), ys + y(ξ)), f(θ(ξ))⟩hkl(ξ) dS(ξ) .

(4)
Thanks to the satellite’s yaw corrections, the acquisition

geometry does not vary across the orbit. In other words,
relative to the subsatellite point, H(ys) describes the same
set of points as the subsatellite point moves along the trace.
The set H ′ = {(x, y − ys) | (x, y) ∈ H(ys)} is stationary.
This implies that the model of Equation (4) is stationary
along the trace, and this manifests itself formally in the fact
that it is a convolution with respect to the variable ys.

To take advantage of this fact, we apply to this equation the
partial Fourier transform with respect to ys. For a function
of two variables u(x, y), this transform is defined by

ũ(x, ω) :=

∫ ∞

−∞
u(x, y)e−iωy dy .

Now the partial Fourier transform of the corrected visi-
bilities, Ṽkl(ω) =

∫∞
−∞ Vkl(y)e

−iωy dy , can be written in
terms of the partial Fourier transform of the parameters,
α̃(x, ω) =

∫∞
−∞ α(x, y)e−iωy dy . Letting

q(x, y) = hkl(ξ(x, y))(1, f1(θ(x, y)), . . . , fm(θ(x, y))),

we see, through a simple change of variable y′ = ys + y(ξ)
and the stationarity of the geometry, that

Ṽkl(ω) =

∞∫
−∞

(∫∫
H(ys)

⟨α(x, ys + y), q(x, y)⟩dS
)
e−iωys dys

=

∫∫
||ξ||<c

⟨α̃(x(ξ), ω)e−iωy(ξ), q(x(ξ), y(ξ))⟩dS (ξ).

(5)

A global inversion of Equation (5) to recover the bright-
ness temperature parameters from all visibilities measured
along an orbit can therefore be decomposed into smaller
inversions, recovering independent subsets of the parameters.
For each orbital frequency ω ∈ R, we can invert Equation (5)
to recover the set of transformed parameters α̃(x(ξ), ω).
More precisely, for each satellite position y, we are given
M2 visibilities, derived from the M2 equations (given in
Equation (4)), which we seek to invert to estimate the bright-
ness temperature parameters α(x, y). After transforming
Equation (4) into Equation (5), we still have M2 equations,
with the M2 transformed visibilities known. However, these
equations now have, as unknowns, the functions x → α̃(x).
They can now be resolved independently for each ω! Having
done this, we can apply the inverse partial Fourier transform
to α̃(x, ω) to arrive at α(x, y).

D. Discretization

We pass to the discrete setting because the visibilities
are computed not in a continuous fashion but rather once
per correlator integration period and because we wish to
invert Equation (5) over a finite segment of the orbital trace
(small enough to resemble a great circle). The above analysis,
based on the invariance of the acquisition geometry across
the orbital segment, readily informs the discrete setting. The
partial Fourier transform trick becomes the partial discrete
Fourier transform trick.

Inverting Equation (5) requires discretizing the set of
directions that intersect Earth to form a Riemann sum over
the set of ξ for which ||ξ|| ≤ c. Equivalently, this can be
seen as discretizing H ′ = {(x(ξ), y(ξ)) | ||ξ|| ≤ c} and
ultimately the band B. After subtracting the contribution of
the mean temperature function over the scene f0(θ) from the
visibilities, discretizing the integral in Equation (5) relates
the partial Fourier transform Ṽkl of the visibilities, evaluated
at each orbital frequency ω, to the partial Fourier transform
α̃(x, ω) of the maps of brightness temperature parameters
via a matrix multiplication.

Let NH′ be the number of distinct points in our sampling
of H ′ and Nlat be the number of distinct values of x(ξ).
Inverting Equation (5) involves computing the pseudo-inverse
of an M2 × (m ·NH′) matrix, referred as the G matrix.5

E. Comparison with similar approaches in radio astronomy

In 1979, Ekers and Rots [3] introduced into the ra-
dio interferometry literature the idea of taking the Fourier

5Since ξ and η each depend on both geodesic coordinates x and y
(via ρ(x, y)), to integrate out the y and render the equation purely in
terms of the unknown x → α̃(x), we must rewrite dS(ξ) as dS(x, y) =
R2 cos(x)(R−(R+h) cos(x) cos(y))

ρ(x,y)3
dy dx. When we do this, the G matrix

shrinks to M2 × (m ·Nlat), where Nlat = O(
√

NH′ ).



Fig. 3. At the top, we have a three-channel image of brightness temperature
parameters. When the subsatellite point lies in the center of this image,
the map of brightness temperature, uniformly sampled and occupying the
square [−1, 1]× [−1, 1] in the ξ-η plane, is as given in the center row, left
column. However, due to undersampling of the visibilities in the u-v plane,
a direct inversion of the visibilities to recover the brightness temperature
map associated with the snapshot yields a folded image, as in the image in
the center row, right column. This folding invades the entire field of view;
the brightness temperature parameters are everywhere indeterminate from
a single snapshot alone. Only by inverting a system of snapshots—either
by a direct inversion of the convolution mechanism (one large, invertible
matrix), or by using the “partial Fourier transform” trick to decompose
this computation orbital frequency-by-orbital frequency—can we recover
an image of the brightness temperature parameters, as in the image in the
bottom row. Note that the top and bottom five rows of the parameter image,
which correspond to the sky and space (modeled here as a constant 3 K
from any angle), are poorly reconstructed because in most snapshots they
are not visible (||ξ|| > 1) and even when they are visible the modified
brightness temperature (that is, the brightness temperature scaled by the
antenna product and obliquity factor) is extremely low.

transform along the direction cosines corresponding to the
pointing directions of an interferometer moving between
phase centers. Pety and Rodriguez-Fernandez [4] used this
technique in wide field imaging, fusing images from multiple
pointings via a convolution in the u-v plane. Owing to the
different geometry of our application (with all but the shortest
orbital segments), such an approach to image fusing is not
possible here. Our approach differs not just in the geometry
but in the way images are fused, via the transform itself and
not via a convolution in the transform domain.

II. NUMERICAL VALIDATION OF UNFOLDING USING THE
“PARTIAL FOURIER TRANSFORM” TRICK

In this section, we demonstrate numerically that the “par-
tial Fourier transform trick” along with the global inversion
strategy can simultaneously denoise a map of brightness tem-
perature parameters and expand the alias-free field of view.

Fig. 4. A comparison of the direct and partial Fourier inversion methods,
with the SMOS noise model and the swath from Figure 5. Across all
geodesic coordinates x, reconstruction error is higher for a brightness
temperature model with four principal components (bottom) than it is
for one with two (top). Error also increases with the factor s by which
the visibilities were decimated. Reassuringly, reconstruction error did not
depend on the choice of inversion technique. Note that, in these figures, the
set of visibilities each method used to invert had different noise samples
though of the same variance. When given the same set of visibilities, with
identical noise samples, images of parameters recovered via the two methods
are identical, up to a precision of between 10−13 and 10−10 (see the
second image in Figure 5), depending on the probed values of brightness
temperature parameters C as well as the decimation factor s and correlation
bandwidth-time product B · τ—and thus the noise level.

For scenarios where the modified brightness temperatures
and visibilities form a DFT pair, we can decimate the visibil-
ities along v-axis to introduce a highly structured pattern of
aliasing that can be directly modeled and unfolded.6 Though
there is no alias-free portion of each brightness temperature
snapshot, we have enough snapshots in our simulation to
recover the brightness temperature parameters via two global
inversion techniques: either by directly unfolding the linear
system that acts on the brightness temperature parameters
to generate the folded brightness temperature snapshots, or
by using the partial Fourier trick introduced in the previous
section.

A. Obtaining an explicit model of along-track folding

We systematically decimate the visibilities to induce a
regular pattern of aliasing, which we call “folding.” We can
obtain an explicit model of the aliasing because decimation
and folding are transform pairs. In particular, decimating the
DFT of an M -point signal by a factor of s, where s divides
M , induces s-fold folding in the time-domain signal.

6It is not essential for the partial Fourier method that the undersampling
of baselines be limited to the along-track direction. Undersampling of
visibilities in a regular manner only along the v-axis ensures that folding
in the brightness temperature snapshots occurs only along latitude lines.
This simplification enables the decomposition of the global direct inversion
into a series of latitude-by-latitude inversions, making the direct inversion
technique easier to specify and more computationally tractable.



Lemma II.1. Let x be an M -point discrete signal and X its
M -point DFT. Suppose s divides M . Consider the M

s -point
discrete signal xf whose DFT is X , decimated by the factor
s: for ω ∈ Z/M

s Z, Xf [ω] = X[sω]. We may write xf as
follows:

xf [m] = x[m] + x[m+ s] + . . .+ x
[
m+

s− 1

s
M

]
for m ∈ Z/M

s Z.

Let I be a C-channel, M ×N image of the C brightness
temperature parameters α of each point p of a visible band of
the Earth’s surface. We suppose the subsatellite point begins
at the middle of the leftmost edge of the image7 and that
the grid of sampled directions moves one pixel to the right
each snapshot, as in Figure 1.8 The kth image of brightness
temperatures observed, then, is Tk =

∑C−1
c=0 Ick ⊙Qc, where

Ick is the image of the cth parameter of the kth snapshot9

and Qc is the Hadamard product (⊙) of the antenna radiation
patterns,10 the cth principal component of the brightness tem-
perature model scaled by its root variance, and the modified
obliquity factor.11 The M × M image of visibilities of the
kth snapshot are produced by taking the two-dimensional,
M -point DFT of the temperature image Tk, then setting each
column to zero except for columns 0, s, . . . , (s−1)M

s . To this
M×M image of visibilities, we add complex additive white
Gaussian noise with standard deviation σ = VDC/

√
2Bτ ,

where VDC is the visibility corresponding to the (0, 0)
baseline, B is the bandwidth and τ the correlation time. (We
typically use SMOS values B = 20 MHz and τ = 1 second,
though in Figure 5 we reduced the time-bandwidth averaging
by a factor of 100 to produce distinguishable brightness
temperature curves.)

From the set of noisy, decimated simulated visibilities
associated with any snapshot number k, we can recover the
M × M image of observed brightness temperatures T̃k by
taking the two-dimensional, M -point inverse DFT. As the
rightmost image in Figure 3 indicates, a highly structured—
and, when adequately observed, invertible—form of aliasing
invades the full M × M image of brightness temperatures.
The brightness temperature parameters of the pixels visible
in this snapshot can be recovered only through a global
inversion that uses multiple observations. In effect, we have
sampled the visibilities at M2

s distinct baselines, across N

7More precisely, the trace of the subsatellite point passes through the
latitude parallel x = 0, which is taken to move across row M−1

2
of the

image (between rows if M is even). The subsatellite point’s initial position,
assumed to coincide with the reference longitude y = 0, overlies the zeroth
column of the image if M is odd and lies half a pixel to the left of that
column otherwise.

8This assumption is not consistent with DFT sampling. Recall that the
DFT sampling was chosen chiefly so as to induce a highly regular pattern
of folding in snapshots of brightness temperatures recovered from a single-
snapshot inversion of an undersampled set of visibilities.

9With DFT sampling, this is the kth M ×M image of parameters that
lie within the unit square in the ξ-η plane:

Ick =

{
I
[
:, k − M

2
(mod N) : k + M

2
(mod N), c

]
if M is even;

I
[
:, k − M−1

2
(mod N) : k + M+1

2
(mod N), c

]
if not.

(Index slices are left-inclusive and right-exclusive.)
10For both antennas we use simulated patterns based on the SMOS X

polarization.
11That is, 1√

1−ξ2−η2
where ||(ξ, η)|| < 1 and 1 otherwise (where

||(ξ, η)||∞ ≤ 1).

snapshots, generated from brightness temperatures governed
by CMN unknown parameters. With N = 2M , we have
2
sM

3 equations and 2CM2 unknowns, which can be inverted
latitude by latitude (the direct global inversion) or orbital
frequency by orbital frequency (the partial Fourier inversion),
but not snapshot by snapshot (as in SMOS) due to the lack
of alias-free field of view.

B. The direct global inversion

Fix row number r and consider the one-dimensional, M -
point, M

s -periodic signal Sr
k = T̃k[r, :] of observed bright-

ness temperatures12 observed in row r in snapshot k. By
Lemma II.1 and linearity of expectation, the expected value
of this is a convolution operating on Tk—and, indeed, the
rows of I . For m ∈ Z/M

s Z,

Sr
k[m]=Tk[r,m]+Tk[r,m+s]+...+Tk[r,m+ s−1

s M ]

=
∑C−1

c=0

(
I[r,k+m,c]Qc[r,m]+...+

I[r,k+m+
(s−1)M

s (mod N ),c]Qc[r,m+
(s−1)M

s ]
)
.

Since the subsatellite point and grid of sampled directions
(ξ, η) move one pixel to the right each correlation time, by
making a periodic extension of the image Earth beyond its
boundary in each row, the visibilities are produced via a
cyclic convolution of the values of the brightness temperature
along the row.

The inversion of a row can be accomplished by tak-
ing the pseudoinverse of an NM

s × CN matrix G = G0,0 . . . G0,C−1

...
. . .

...
GM

s −1,0 . . . GM
s −1,C−1

, an M
s × C block matrix

composed of N × N circulant matrix blocks Gm,c that
capture the contribution of the cth brightness temperature
parameter to mth pixel in row r of the kth folded snapshot,
Sr
k[m], for snapshot k ∈ Z/NZ.
Gm,c can be specified by giving its first row, which has s

nonzero terms at positions m, m+ M
s , . . . ,m+ s−1

s M :

(0mQc[m]0M
s

−1
Qc[m+M

s ]0M
s

−1
...Qc[m+

(s−1)M
s ]0M

s
−1−m

0N−M ),

where 0k = (0, . . . , 0)︸ ︷︷ ︸
k times

is the vector of k 0s.

C. The “partial Fourier” global inversion

Taking the partial Fourier transform of the visibilities,13

we get

V̂k[m,n,ω]=
N−1∑
n=0

Vk[m,n]e
−2πinω

N

=
C−1∑
c=0

M−1∑
q,r=0

Qc[m,l]e
−2πi(qm+rns)

M e
2πirω

N

( r+N−1∑
t=r

I[q,t,c]e
−2πitω

N

)
=

C−1∑
c=0

M−1∑
q=0

Îpartial[q,ω,c]e
−2πiq

M

(M−1∑
r=0

Qc[q,r]e
−2πir(ns/M−ω/N)

)
.

Now expressing the inversion of the transformed visi-
bilities associated with a single orbital frequency ω, the
M2

s × CM G matrix is made up of M
s × C circulant

12Remember, we have subtracted out the mean contribution to the visi-
bilities before decimating and inverting to form the brightness temperature
snapshots Sr

k .
13With the contribution of f0(θ) already subtracted out of each visibility,

or equivalently from the partial Fourier transformed visibilities at the orbital
frequency ω = 0.



matrix blocks Gr,c whose transpose’s (also circulant) first
row contains the M elements of Q̂ZP

c [:, 2ns−ω (mod N)]
under the permutation on {0, . . . ,M − 1} given by π : n 7→
M − n (mod M). Here Q̂ZP

c is the two-dimensional, M -
point by N -point DFT of the zero-padded QZP

c , defined by

QZP
c [i, j] =

{
Qc[i, j] if j ≤ M − 1,

0 otherwise.

D. Comparison of methods

As Figure 4 shows, both methods successfully invert
simulated images of brightness temperature parameters using
a realistic noise model. In fact, Figure 5 shows that they
produce almost identical results, in high-noise scenarios.
SVD truncation error explains the differences between the
two methods, and it was insignificant for the DFT sampling
scenario and antenna patterns tested.

III. CONCLUSION

We proposed a global inversion technique for the equation
that expresses the Van Cittert-Zernike theorem. Using the
invariance of the acquisition geometry, we can express the
partial discrete Fourier transform of the visibilities, taken
along the satellite’s trace, in terms of the corresponding
partial discrete Fourier transform of the image of brightness
temperature parameters, sampled uniformly in latitude and
longitude relative to the satellite’s trace. The image of
brightness temperature parameters can therefore be inverted
one frequency at a time. In this way, a global inversion, with
its ability to expand the field of view by overcoming folding
and to reduce noise, is broken down into a set of smaller
inversions that can be performed independently.

This concept was validated numerically by introducing a
regular, invertible pattern of folding in an orbital scenario
whose sampling permits the brightness temperatures sampled
in the ξ-η plane and the visibilities sampled in u-v plane to
form a DFT pair. Brightness temperature parameters recov-
ered from the visibilities via the partial Fourier inversion
agreed with those obtained through a direct inversion of the
folding mechanism. Future work will evaluate this technique
with arbitrary, irregular baseline sampling in the u-v plane
to aid the design of future satellite instruments.
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Fig. 5. The top image displays three brightness temperature (BT) parameters
(C = 3), recovered via the direct inversion from a series of observations
of highly undersampled visibilities (s = 4), in an unrealistically high-
noise scenario (the Bτ product is 100 times that of SMOS). The recovered
parameters are written into each channel of this RGB image, overstating the
reconstruction error: the third principal component has 10−3 the variance
of the first, but the two contribute equally to this RGB image! (Hence the
noisy blue channel.) Below that, we see the reconstruction error on the
first principal component parameters for the portion of the image on the
Earth’s surface (that is, without the top and bottom five rows). Even at
the horizon, where the signal-to-noise ratio is at its lowest, the recovered
parameters give reasonable temperature curves, as the third image illustrates.
The direct inversion and the partial Fourier inversion give, for each pixel,
nearly identical BT curves, and these two curves agree with the curve
resulting from the pixel’s actual BT parameters. The fourth image displays
the pixelwise difference in the second principal component between the two
global inversion methods, which is less than 10−10. The final image shows
the error (in Kelvin) in the reconstructed BT curve for each pixel on Earth’s
surface, sampled at 2.5◦ (left third of the image), 22.5◦ (middle third),
and 57.5◦ (right third). The error, at a given incidence angle, is lowest at
latitudes that are observed at that incidence angle the most. At low incidence
angles, pixels near the trace show the lowest error. The reconstruction error
at intermediate incidence angles is lowest in intermediate latitude bands,
whose pixels were observed at intermediate incidence angles in the most
snapshots. All pixels were observed at 57.5◦ roughly as often (and with
similar antenna pattern values), except those at the most extreme latitudes.


